
Journal of Applied Mechanics and Technical Physics, Vol. 50, No. 4, pp. 589–598, 2009

UNSTEADY BEHAVIOR OF AN ELASTIC ARTICULATED BEAM

FLOATING ON SHALLOW WATER

UDC 532.591+539.3I. V. Sturova

The unsteady behavior of an elastic beam composed of hinged homogeneous sections, which freely
floats on the surface of an ideal incompressible fluid, is studied within the framework of the linear
shallow water theory. The unsteady behavior of the beam is due to incidence of a localized surface
wave or initial deformation. Beam deflection is sought in the form of an expansion with respect to
eigenfunctions of oscillations in vacuum with time-dependent amplitudes. The problem is reduced
to solving an infinite system of ordinary differential equations for unknown amplitudes. The beam
behavior with different actions of the medium and hinge positions is studied.
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The hydroelastic behavior of various bodies (ice fields, offshore platforms, and breakwaters) floating on the
fluid surface is studied in solving applied problems. In the course of mathematical modeling, such bodies are often
considered as thin elastic plates, because their horizontal sizes are much greater than their thickness. The major part
of research of the behavior of floating bodies was performed under the assumption that the plate has homogeneous
structural properties. In reality, however, both ice fields and artificial structures are not homogeneous. Structural
heterogeneity can be caused by variation of the mass and rigidity coefficients along the plate and by the presence
of hinged joints.

We confine ourselves to considering a very simple case of a plate composed of hinged homogeneous sections.
For ice fields, such a situation is observed in the case of free overlapping of ice floes. In artificial structures, individual
sections can be connected by simple hinged joints.

By the moment, the behavior of an articulated plate has been studied only for a linear problem of scattering
of periodic surface waves under the assumption that the fluid flow and plate deformation are periodic functions of
time. Oblique incidence of surface waves onto an elastic semi-infinite compound plate floating on the free surface of
a finite-depth fluid was considered in [1]. In that study, the frontal section of a constant-width plate was connected
by an elastic hinge with the main section, and the characteristics of these two sections were different. A plane
problem for a five-section beam floating on the surface of a finite-depth fluid was considered in [2]. All sections were
identical and connected by simple hinges. For the case of scattering of incoming surface waves by such a beam, the
maximum amplitudes of deflections were demonstrated to occur at the points of the hinged joint. The behavior
of a five-section rectangular plate exposed to head surface waves was studied in [3]. The elasticity parameters and
the size of the sections at which the hinged joint produced a substantial effect were estimated. The solution for a
two-section beam floating on the surface of a finite-depth fluid was given in [4, 5] for a beam with identical sections
[4] and for a beam with sections of different lengths and different structural characteristics [5]. The behavior of
an elongated two-section rectangular plate with oblique incidence of surface waves was considered in [6]. It was
demonstrated that the elasticity of the hinged joint and the properties of individual sections exerted a significant
effect on the hydroelastic behavior of the compound plate.
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In the present paper, we propose a method of solving a linear unsteady problem of the behavior of a floating
two-section elastic beam plate. The following cases are considered as examples of the unsteady behavior: incidence
of a localized surface wave onto the plate and initial deformation of the plate. These cases were studied for a
homogeneous plate floating on shallow water in [7] and under the action of an arbitrary external load in [8].

1. Formulation of the Problem. Let an elastic beam of length 2L consisting of two sections connected
by a simple hinge float freely on the surface of an ideal incompressible fluid layer of depth H . The structural
characteristics of both sections of the beam are identical. The fluid surface that is not covered by the beam is
considered as a free surface. The domain S occupied by the fluid is divided into three parts: S1 (|x| < L), S2

(x < −L), and S3 (x > L) (x is the horizontal coordinate). The fluid depth is assumed to be small as compared
with the length of the surface and flexural-gravity waves, and the shallow water approximation is used. The velocity
potentials that describe the fluid motion in the domains Sj are ϕj(x, t) (j = 1, 2, 3), where t is the time.

Let a localized surface wave be incident onto the beam from the left. The vertical displacement of the fluid
in this wave is η0(x, t) = f(x−√

gH t). The function f(ξ) differs from zero only at |ξ| < c. Such a wave can arise
as a result of the collapse of the initial elevation of the free surface at the time t = t0 under the condition that the
entire fluid is at rest at the initial time. In this case, the free surface at t > t0 is known to consist of two localized
waves moving without deformation in the opposite directions with a velocity

√
gH [9]. The amplitudes of these

waves are equal to one half of the amplitude of the initial elevation, and the width of the region occupied by each
wave is equal to the width of the initial elevation region. It is assumed that the beam and the fluid at the time
t = 0 are at rest in the domains S1 and S3, while the localized disturbance reaches the left edge of the beam in the
domain S2. At t > 0, the beam and the fluid start to oscillate in the domain S1, which induces wave disturbances
expanding from the plate in the domains S2 and S3.

The normal deflection of the Euler beam w(x, t) is described by the equation

D
∂4w

∂x4
+m

∂2w

∂t2
+ gρw + ρ

∂ϕ1

∂t
= 0 (x ∈ S1), (1.1)

where D is the coefficient of cylindrical stiffness of both sections of the beam, m is their specific mass, ρ is the
density of water, and g is the acceleration due to gravity.

According to the linear shallow water theory, the following relation is valid:

∂w

∂t
= −h ∂

2ϕ1

∂x2
(x ∈ S1), h = H − d (1.2)

(d = m/ρ is the beam draft).
The velocity potentials outside the beam satisfy the equations

∂2ϕj

∂t2
= gH

∂2ϕj

∂x2
(x ∈ Sj), j = 2, 3. (1.3)

The elevations of the free surface η2(x, t) and η3(x, t) in the domains S2 and S3 are found from the relations

ηj = −1
g

∂ϕj

∂t
(x ∈ Sj), j = 2, 3.

The free hinge is assumed to be located at the point x = x1 (|x1| < L). The following notations are introduced:

w(x, t) =

{
w−(x, t), −L � x < x1,

w+(x, t), x1 < x � L.

The following conditions are satisfied at the hinge point (see, e.g., [1] for more details):

w− = w+,
∂2w−

∂x2
=
∂2w+

∂x2
= 0,

∂3w−

∂x3
=
∂3w+

∂x3
(x = x1).

The free-edge conditions (zero bending moment and shear force) are imposed on the beam edges:

∂2w−

∂x2
=
∂3w−

∂x3
= 0 (x = −L),

∂2w+

∂x2
=
∂3w+

∂x3
= 0 (x = L).

The conditions of continuity of pressure and mass have to be satisfied in the fluid at x = ±L:
∂ϕ1

∂t
=
∂ϕ2

∂t
,

∂ϕ1

∂x
=
H

h

∂ϕ2

∂x
(x = −L);

∂ϕ1

∂t
=
∂ϕ3

∂t
,

∂ϕ1

∂x
=
H

h

∂ϕ3

∂x
(x = L). (1.4)
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The conditions of the absence of disturbances are imposed far from the beam:
∂ϕ2

∂x
→ 0 (x→ −∞),

∂ϕ3

∂x
→ 0 (x→ ∞).

The initial conditions have the form

w = η3 =
∂ϕ1

∂t
=
∂ϕ3

∂t
= 0, η2 = η0,

∂ϕ2

∂t
= −gη0 (t = 0). (1.5)

Let us pass to dimensionless variables, using L as the length scale and
√
L/g as the time scale.

The following dimensionless coefficients are used in what follows:

δ = D/(ρgL4), γ = d/L.

2. Method of Normal Modes. We seek for beam deflection in the form of an expansion with respect to
eigenfunctions of oscillations of the compound beam with free edges in vacuum:

w(x, t) =
∞∑

n=0

Xn(t)Wn(x). (2.1)

Here, the functions Xn(t) have to be determined, and the functions Wn(x) are solutions of the following spectral
problem in dimensionless variables:

W (IV)
n = λ4

nWn (|x| � 1),

(W−
n )′′ = (W−

n )′′′ = 0 (x = −1), (W+
n )′′ = (W+

n )′′′ = 0 (x = 1), (2.2)

W−
n = W+

n , (W−
n )′′ = (W+

n )′′ = 0, (W−
n )′′′ = (W+

n )′′′ (x = x1)

(the prime denotes differentiation with respect to x). These solutions have the form

W0 = 1/
√

2, W1 =
√

3/2x,

W−
2 =

√
3(1 − x1)
2(1 + x1)3

[1 + (2 + x1)x], W+
2 =

√
3(1 + x1)
2(1 − x1)3

[1 + (x1 − 2)x],

W−
n = Bn{sin (λn(x + 1)) + sinh (λn(x+ 1)) −Dn[cos (λn(x + 1)) + cosh (λn(x+ 1))]},

W+
n = BnCn{sin (λn(1 − x)) + sinh (λn(1 − x)) − Fn[cos (λn(1 − x)) + cosh (λn(1 − x))]},

where

Dn =
sin zn − sinh zn

cos zn − cosh zn
, Fn =

sin vn − sinh vn

cos vn − cosh vn
, Cn =

(cos vn − cosh vn)(sinh zn cos zn − cosh zn sin zn)
(cos zn − cosh zn)(sinh vn cos vn − cosh vn sin vn)

,

Bn =
√
λn/(znD2

n + vnF 2
nC

2
n), zn = λn(1 + x1), vn = λn(1 − x1).

(2.3)

The eigenvalues λn are determined from the equation

(sinh zn cos zn−cosh zn sin zn)(1−cosh vn cos vn)+(sinh vn cos vn−cosh vn sin vn)(1−cosh zn cos zn) = 0 (n � 3),

λ0 = λ1 = λ2 = 0.
(2.4)

In the space L2(−1, 1), the functions Wn(x) form a full orthogonal system normalized as follows:
1∫

−1

Wn(x)Wm(x) dx = δnm

(δnm is the Kronecker delta).
If the hinged joint is located in the middle of the beam (x1 = 0), then the system of eigenfunctions Wn(x)

decomposes into even and odd components with respect to x. For k � 1, the functions W2k+1(x) coincide with odd
eigenfunctions for a homogeneous beam (see, e.g., [8]):
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W2k+1(x) =
sin (λ2k+1x) + S2k+1 sinh (λ2k+1x)√

1 − S2
2k+1

, S2k+1 =
cosλ2k+1

cosh λ2k+1
.

The eigenvalues λ2k+1 are determined from the equation tan λ2k+1 = tanh λ2k+1. For k � 2, the functions W2k(x)
have the form

W2k(x) = B2k{sin (λ2k(1 − |x|)) + sinh (λ2k(1 − |x|)) −D2k[cos (λ2k(1 − |x|)) + cosh (λ2k(1 − |x|))]},
where the values of B2k and D2k are determined from Eqs. (2.3) with z2k = v2k = λ2k. The eigenvalues λ2k satisfy
the equation cosλ2k cosh λ2k = 1.

Substituting expansions (2.1) into Eqs. (1.1) and the initial conditions (1.5), multiplying the resultant rela-
tions by Wm(x), and integrating them with respect to x from −1 to 1, we obtain the system of ordinary differential
equations (ODE)

γẌm + (δλ4
m + 1)Xm + fm(t) = 0, Xm(0) = Ẋm(0) = 0,

where

fm(t) =

1∫
−1

Wm
∂ϕ1

∂t
dx,

and the over-dot indicates differentiation with respect to time.
The solution for ϕ1(x, t) is sought in the form

ϕ1(x, t) = − 1
h

[
V (t) + xU(t) +

∞∑
k=1

Qk(t) sin
(kπ

2
(x+ 1)

)]
. (2.5)

Substituting this expansion into Eq. (1.2), multiplying the resultant relation by sin[mπ(x + 1)/2], and integrating
it with respect to x from −1 to 1, we obtain

Qm(t) = − 4
π2m2

∞∑
n=0

Ẋn(t)Pnm,

where

Pnm =

1∫
−1

Wn(x) sin
(mπ

2
(x+ 1)

)
dx.

The values of Pnm are calculated analytically, but the expressions for these quantities are not given here, being too
cumbersome. The functions V (t) and U(t) are determined from the matching conditions (1.4).

Let us consider the behavior of the solution in the domains S2 and S3. The solution for ϕ2(x, t) is sought in
the form

ϕ2(x, t) = ϕ0(x, t) + ψ(x, t),

where ϕ0(x, t) is the potential of the incident wave, which is found from the relation

∂ϕ0

∂x
=

η0√
H
.

The function ψ(x, t) describes the velocity potential of the reflected wave. According to Eq. (1.3), the solution for
ψ(x, t) can be sought in the form

ψ(x, t) =

{
A((x+ 1)/

√
H + t), −(1 +

√
H t) < x < −1,

0, x < −(1 +
√
Ht).

(2.6)

A similar presentation is obtained for the function ϕ3(x, t), which describes the velocity potential of the transmitted
wave:

ϕ3(x, t) =

{
B(t− (x− 1)/

√
H ), 1 < x < 1 +

√
Ht,

0, x > 1 +
√
H t.

(2.7)
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The functions A(ξ) and B(ξ) in formulas (2.6) and (2.7) are unknown. Using the matching conditions (1.4), we
obtain the differential equations for these functions in the form

Ȧ =
1√
H

( 2
π

∞∑
n=0

ẊnRn − U
)
− α(t), Ḃ =

1√
H

(
U − 2

π

∞∑
n=0

ẊnZn

)
(2.8)

with the initial conditions A(0) = B(0) = 0, where

α(t) = η0(−1, t), Rn =
∞∑

k=1

Pnk

k
, Zn =

∞∑
k=1

(−1)k Pnk

k
.

Using the relations obtained, we write the final ODE system for determining beam oscillations in the form
∞∑

n=0

(
γδnm +

4
π2h

Tnm

)
Ẍn + (δλ4

m + 1)Xm −√
2

(
α(t) +

1
π
√
H

∞∑
n=0

(Zn −Rn)Ẋn

)
δ0m

+

√
2
3

[
α(t) +

1√
H

(
U − 1

π

∞∑
n=0

(Zn +Rn)Ẋn

)]
δm1 = 0, (2.9)

U̇ = −h
[
α(t) +

1√
H

(
U − 1

π

∞∑
n=0

(Zn +Rn)Ẋn

)]
,

where

Tmn =
∞∑

k=1

PnkPmk

k2
.

Determining the functions Xn(t) and U(t), we can find all characteristics of motion of the fluid and the
elastic beam. For instance, the vertical elevations of the free surface in the domain S2 are

η2(x, t) = η0(x, t) + ζ(x, t),

ζ(x, t) =

{ −Ȧ((x+ 1)/
√
H + t), −(1 +

√
Ht) < x < −1,

0, x < −(1 +
√
H t),

and these elevations in the domain S3 are

η3(x, t) =

{ −Ḃ(t− (x− 1)/
√
H ), 1 < x < 1 +

√
H t,

0, x > 1 +
√
H t

[the functions Ȧ(ξ) and Ḃ(ξ) are determined in Eq. (2.8)].
3. Energy Relation. Let us determine the time evolution of the energies of the transmitted and reflected

waves. The total energy of the incident wave is [9]

E0 =

−1∫
−(1+2c)

η2
0(x, 0) dx.

This energy is transferred to oscillations of the elastic plate and scattered (transmitted and reflected) surface waves.
As t → ∞, plate oscillations decay, and the plate returns to the initial horizontal location. The energy of the
reflected wave is

Er(t) =

−1∫
−(1+

√
Ht)

ζ2(x, t) dx =
√
H

t∫
0

Ȧ2(ξ) dξ,

and the energy of the transmitted wave is

Et(t) =

1+
√

H t∫
1

η2
3(x, t) dx =

√
H

t∫
0

Ḃ2(ξ) dξ.
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Fig. 1. Eigenvalues λn (n = 3, . . . , 8) versus the hinge coordinate x1: the dashed curves are the
eigenvalues for antisymmetric modes of a homogeneous beam.
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Fig. 2. Eigenfunctions W3(x) (a) and W4(x) (b): curves 1 and 2 refer to a compound beam with
x1/L = 0.5 (1) and x1 = 0 (2); curve 3 refers to a homogeneous beam.

This problem does not involve energy dissipation; hence, we obtain

lim
t→∞E(t) = E0, E(t) = Er(t) + Et(t).

Satisfaction of this equality can serve as a criterion of accuracy of the method used.
4. Calculation Results. Using the reduction method, we replace the infinite series in expansions (2.1),

(2.5) by sums with the number of terms N and K, respectively. The ODE system (2.9) is solved numerically by
the fourth-order Runge–Kutta method.

Figure 1 shows the eigenvalues λn determined by solving Eq. (2.4) for modes with numbers n = 3, . . . , 8
as functions of the hinge coordinate x1. As x1 → 1, the eigenvalues correspond to a homogeneous beam. At
x1 = 0, the eigenvalues with odd numbers λ2k+1 at k � 1 coincide with the eigenvalues for antisymmetric modes
of a homogeneous beam (dashed curves in Fig. 1). Note that there are only two eigenfunctions for a homogeneous
beam at a zero eigenvalue (the so-called rigid-body modes (see, e.g., [8])). Addition of each next hinge increases
the multiplicity of the zero eigenvalue and, correspondingly, the number of eigenfunctions. For a five-section beam,
for instance, there are six eigenfunctions at the zero eigenvalue [3].

Figure 2 shows the eigenfunctions Wn(x) (n = 3, 4). As was noted above, antisymmetric eigenfunctions at
x1 = 0 coincide with the corresponding eigenfunctions for a homogeneous beam. At x1 = 0.5, the eigenvalues are
λ3 = 2.9745 and λ4 = 4.9772; at x1 = 0, the eigenvalues are λ3 = 3.9266 and λ4 = 4.7300; for a homogeneous
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beam, λ4 = 5.4978. If there is a hinge, the functions Wn(x) have inflections at the point x = x1, and the maximum
absolute values of these functions can occur both at the beam edges and at the hinge point.

The following dimensional initial parameters are used in the calculations: L = 500 m, d = 5 m, δ = 5 · 10−3,
ρ = 103 kg/m3, and H = 20 m. In all calculations performed, the number of beam oscillation modes is N = 25, the
number of harmonics in Eq. (2.5) is K = 200, and a further increase in the values of N and K has almost no effect
on the result.

The shape of the localized surface wave incident onto the elastic beam is chosen as

f(ξ) =

{
(a/2)(1 + cos (πξ/c)), |ξ| < c,

0, |ξ| > c,

where ξ = x− t
√
gH − x0. The total energy of such a wave is constant in time and equal to

E0 = ρg

c∫
−c

f2(ξ) dξ =
3
4
ρga2c.

Figure 3 shows the shapes of the free surface and the beam at x0/L = −1.25 and c/L = 0.25 at the time
t
√
g/L = 10. This time corresponds to the moment when the initial wave passes under the beam, which results in

beam deformation. Obviously, beam deflections and the shape of the free surface depend essentially on the presence
and location of the hinged joint.

The dimensionless values of the coefficients X0, X1, . . . , X7 and the function u at t
√
g/L = 10 for four

variants of the beam shown in Fig. 3 are summarized in Table 1. The coefficients X0 and X1 corresponding to the
so-called rigid-body modes are seen to have the highest values. The absolute values of the function u are close to
the values of the coefficient X3. It follows from Table 1 that the absolute values of Xn decrease rather rapidly with
increasing n.

Figure 4 shows the time evolution of the total energy of the transmitted and reflected waves E and the total
energy of the reflected wave Er for four variants of the beam. It is seen that the highest value of the total energy
for all variants of the beam considered is reached at t

√
g/L ≈ 15. By this time, beam oscillations cease, and a

considerable portion of the initial energy of the incident wave is transformed to the energy of the transmitted wave.
The most intense scattering of energy in the reflected wave occurs at x1/L = ±0.5 and amounts approximately to
25% of the initial energy, while this value for a homogeneous beam is approximately 10%. The intermediate value
of reflected wave energy (equal approximately to 15%) is observed at x1 = 0. Therefore, the presence of a hinged
joint can exert a significant effect on transformation of the incident wave.

Let us also consider the unsteady behavior of the beam with its initial deformation in a quiescent fluid. The
initial conditions for this problem have the form

w(x, 0) = w0(x),
∂w

∂t

∣∣∣
t=0

= 0,

ϕj(x, 0) = 0 (j = 1, 2, 3), η2(x, 0) = η3(x, 0) = 0.

The function w0(x) is chosen in the form

w0(x) = (a/2)(1 + cos (πx/L)).

In this problem, there is no external loading, and the ODE system for determining beam oscillations coincides with
system (2.9) under the condition α(t) ≡ 0. The initial conditions for Xm(0) are given by the relations

Xm(0) =

1∫
−1

w0(x)Wm(x) dx, Ẋm(0) = 0.

Figure 5 shows the normal deflection of the beam as a function of time. It is seen that the effect of the hinged
joint is essential only at the initial time instants, and the deflections of a compound beam are more pronounced
than the deflections of a homogeneous beam (Figs. 5b–5d). Beam oscillations decay with time, and the presence of
the hinge almost ceases to exert any noticeable effect (Fig. 5f).
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Fig. 3. Shapes of the free surface and the beam at t
�

g/L = 10 for a homogeneous beam (a) and
a compound beam with x1 = 0 (b), x1/L = 0.5 (c), and x1/L = −0.5 (d); the curves show the
behavior of η2/a (1), w/a (2), and η3/a (3).

TABLE 1
Dimensional Values of the Coefficients X0, X1, . . . , X7

and Function u at t
�

g/L = 10 for Four Variants of the Beam

Coefficient Homogeneous
beam

Compound beam

x1 = 0 x1/L = 0.5 x1/L = −0.5

X0 0.16428 0.17929 0.15591 0.17270
X1 0.14578 0.14635 0.20638 0.17565
X2 −0.05050 −0.04562 −0.01729 −0.05348
X3 0.01949 0.02007 −0.02095 0.02931
X4 −0.00309 0.01153 0.00014 0.01175
X5 0.00023 0.00023 −0.00272 −0.00098
X6 0.00011 0.00043 −0.00004 0.00001
X7 −0.00001 −0.00001 −0.00031 −0.00005

u −0.01583 −0.01883 −0.02262 −0.02083

In this problem, it is also of interest to study the behavior of the eigenvalues of the ODE system (2.9), which
can be written after reduction in the matrix form as

Ẏ = CY + F (t),

where Y = {X0, X1, . . . , XN−1; Ẋ0, Ẋ1, . . . , ẊN−1;U}t; C is a square matrix of the order 2N + 1 with constant
elements; the vector F (t) is defined by unsteady loading.

The eigenvalues and eigenvectors of the matrix C are often called “wet” modes, in contrast to the eigenvalues
and eigenfunctions of problem (2.2), which are called “dry” modes. The properties of “dry” modes are determined
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(dashed curves) for a homogeneous beam (1) and for a compound beam with x1 = 0 (2), x1/L =
0.5 (3), and x1/L = −0.5 (4).
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Fig. 5. Beam deformation caused by its initial deformation: t
�

g/L = 0 (a), 2.5 (b), 5 (c), 7.5 (d),
10 (e), and 12.5 (f); curve 1 refers to a homogeneous beam; curves 2 and 3 refer to a compound
beam with x1 = 0 (2) and x1/L = 0.5 (3).

only by the structural features of the beam, while the properties of “wet” modes depend also on the fluid properties
but do not depend on the type of unsteady loading.

The eigenvalues of the matrix C are determined numerically. This matrix has one purely real eigenvalue μ0

and 2N complex-conjugate eigenvalues μk (k = ±1,±2, . . . ,±N). The real parts of all eigenvalues are negative. Let
us enumerate the eigenvalues in the order of increasing imaginary part: Imμk < Imμk+1. The sign of the number k
corresponds to the sign of the imaginary part of the eigenvalue.

Figure 6 shows the real and imaginary parts of the eigenvalues μk (k = 0, 1, 2, 3) as functions of the hinge
coordinate. It is seen that the effect of the value of x1 on the lower “wet” modes is rather weak. This may be
responsible for the fact that the effect of the hinge in the case of free oscillations of the beam induced by its initial
disturbance is rather pronounced only at small times, when the higher modes make noticeable contributions. The
influence of these modes becomes weaker with time, because they decay faster than lower modes.
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Fig. 6. Real part (a) and imaginary part (b) of the eigenvalues μk of the matrix C versus the hinge
coordinate for modes with numbers k = 0, 1, 2, and 3.

With the use of the results obtained in [10], the proposed method of solving an unsteady problem can be
extended to the case of a compound beam floating on the surface of an infinitely deep fluid.
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